영 역	4	어센	다		1	대고	대과제		1
과제 및 세부과제명		과제 구분 연구분야		수행 기간	과제책임 7 세부과제 ³				
시설채소 안정생산	난 기술 개발		기관고	유	채소	'20~'24	원예연	<u></u> 구과	이진구
1) 아쿠아포닉스 친환경 채소 연중생산 기술 개발		기관고	유	"	'21~'22	원예연	무과	이진구	
2) 노동력 절감형 무수정가지 재배기술 개발		기관고	유	"	'22~'23	원예연	구과	황지은	
3) 상추 우량계통 지역적응 시험		어젠디	}	"	'20~'24	원예연	「구과	김대균	
4) ICT적용 시설가지 일사량에 따른 급액 제어기술개발		기관고	유	"	'20~'23	원예연	구과	황지은	
색인용어	아쿠아포닉스, 채소, 무수정 가지, 상추, 지역적응, 일사량, 급액제어								

1. 연구개발의 필요성

- 가. 연구개발대상 기술의 경제적,산업적 중요성 및 연구개발의 필요성
- 1) 양어와 수경재배를 결합한 아쿠아포닉스 기술로 친환경 채소의 생산 및 도내 시범사업 추진으로 농가 소득 향상에 기여(2021, 경기도)
- 2) 아쿠아포닉스를 활용한 채소의 연중 안정생산, 체험, 교육, 원예치유, 사회적 농업 적용 등 다양한 적용모델의 개발이 필요함 .
- 3) 경기도 시설가지 재배면적은 2020년 기준 64ha로 전국 대비 26.8%, 생산량은 3,530ton으로 전국 대비 20.6%를 차지함(2020, 농림축산식품부)
- 4) 가지 재배시 빈번한 착과, 수확, 측지 제거 등 노동력이 많이 소요되며 코로나19로 인한 인력수급 문제로 농가의 고충이 심각해 일손을 절감할 수 있는 재배기술이 필요함
- 5) 상추는 국내 엽채류중 배추 다음으로 생산량을 차지하는 작물로 소비자의 요구에 부응하며 재배농가의 소득향상 및 재배 안정성 높은 품종개발이 필요함
- 6) 딸기, 토마토 등 수경재배 농가를 위한 ICT 적용 누적일사량에 따른 급액 및 배액기술 등의 연구가 진행되고 있으나, 가지에 대한 양액재배 기술 연구는 미흡한 상태임
- 나. 연구개발대상 기술의 국내.외 현황
- 1) 국내 연구 현황
- 가) 아쿠아포닉스 엽채류 생산성은 토경재배 대비 생산성이 높고 연중생산이 가능 하나 고온기인 여름철 생리장해 및 병해충 발생에 대한 대책 필요함

2022 농업과학기술개발 ▮시험연구계획서

- 나) 가지 재배시 단위결실 품종을 사용하면 착과시기가 빨라지고 착과수도 감소하지 않으며 유기재배가 가능(2019, 경기도원)
- 다) 국립원예특작과학원에서 육성한 상추 계통에 대해 지역별 적응성 공동연구를 수행 중에 있음
- 라) 토마토 양액재배시 누적 일사량에 따라 배양액 공급 개시점을 0.6, 1.2, 1.8, 2.4 MJ/m²로 조사 비교하였을 때, 배양액 공급 개시점은 방울토마토와 일반 완숙토마토 모두 1.2 나 1.8 MJ/m²가 적정한 수준(2001, 충남도원)

2) 국외 연구 현황

- 가) 온실에서 틸라피아를 이용한 양어와 엽채류를 생산하는 모델이 제안(2009, 미국 아리조나 대학)되었으며, 최근에는 연어 등 다양한 어종을 대상으로 상업화 농장이 운영중에 있음(2018, 미국 Superior Fresh Co.)
- 나) 일본에서 가지 재배시 소요노력은 촉성재배의 경우 2,269시간/10a가 소요되며 그중 정지, 적엽, 착과 작업이 1/3을 차지하여 이러한 노동력을 줄일 수 있는 품종 육종 연구가 수행되고 있음
- 다) 유럽에서는 샐러드용 결구상추 중심으로 품종 개발 연구가 진행되고 있으며, 미국을 중심으로는 결구형 상추 품종 육성이 수행되고 있으며 육종 목표는 고 품질 다수성, 내병성, 바이러스 저항성 및 영양가 높은 품종 등 다양한 연구가 수행되고 있음
- 라) 토마토 양액재배 시 배양액 공급을 시간제어법보다 0.81 MJ/m²수준의 일사량 제어에 의한 급액제어 방법이 더 우수(2013, 스페인)

다. 국내외 연구현황 비교 및 필요 연구 분야

연구현황	연구현황 비교			
국 내	국 외	필요연구 분야·내용		
O 물고기, 수조, 여과장치, 베드	O 고급아종의 수익모델 및 샐러드	O 아쿠아포닉스 채소 생년기술의		
등 기본모델 개발, 보급	채소의 산업화	안정적인 정착		
O 얍채류 생산 실증, 시범시업	O 체험, 교육 등 소규모 적용	O 다양한 모델의 확대 보급		
O 책제를 사용하지 않아도 되는	O 가지 재배시 노동력 절감을	O 무수정가지 생육 특성 비교		
유기재배 적합 품종 구명	위한 품종 육성	및 재배기술 연구		
O 쌈용 상추 중심의 품종개발	O 결구 상추 중심의 품종개발	O 국가주도의 중앙 및 자자체		
	- 민간 중심의 육성기관 많음	연계 공동연구		
O 토마토, 파프라카 등 가지과	O 과채류 양액공급을 위한 재배	O 시설가지 급액제어 기술연구		
작물의 수경재배 시 양액공급	기술 개발			
모델 개발				

2. 연구개발 목표 및 내용 가. 정성적 성과 목표

연차	목 표
1차년도	- 상추 우량계통 전국 지역적응 시험 및 품종개발 공동연구
(2020년)	- 일사량 기준 급액 개시점별 가지 생육 및 수량, 품질 특성 분석
2차년도	- 아쿠아포닉스용 정식용 베드 개선 및 채소 생산성 검증
' -	- 상추 우량계통 전국 지역적응 시험 및 품종개발 공동연구
(2021년)	- 일사량 급액 개시점 설정 및 적정 급액량에 따른 가지 생육, 수량 등 분석
	- 아쿠아포닉스용 정식용 베드 검증 및 적합 작물 선발
3차년도	- 무수정가지 적화방법 검정을 위한 노동력, 수량 등 생육 특성 분석
(2022년)	- 상추 우량계통 전국 지역적응 시험 및 품종개발 공동연구
	- 시설가지 시간제어 급액공급 대비 일사량에 따른 급액 모델 실증
4차년도	- 무수정가지 적정 관비개시점 설정을 위한 생육 특성 분석
(2023년)	- 상추 우량계통 전국 지역적응 시험 및 품종개발 공동연구
	- 아쿠아포닉스 채소의 생산성 및 경제성 확보로 보급 확대
+) x	- 노동력 절감 및 소득증대를 위한 무수정가지 재배기술 개발
최종 	- 신 품종 상추 품종 개발 및 보급 확대
	- 고품질 가지생산을 위한 동절기 시설가지 급액제어 기술 개발

나. 정량적 성과 목표

연도 성과지표명		2년차 (2021년)		3년차 (2022년)		4년차 (2023년)		계	
		목표	실적	목표	실적	목표	실적	목표	실적
SCI		-	-	_	-	_	-	_	_
논문게재	ㅂ)SCI	-	-	1	_	_	_	1	_
학술발표	국제	-	-	_	-	_	-	_	_
	국내	1	1	2	-	2	-	5	1
산업체 기술이전		_	_	2	_	_	_	_	_
영농활용 기관제출		2	2	3	-	_	-	5	2
홍보		1	1	4	_	1	_	5	1
계		4	4	12	_	3	_	10	4

2022 농업과학기술개발 ▮시험연구계획서

다. 종합연구내용

세 부 과 제	주 요 연 구 내 용	연 구 목 표	수행기간
1) 아쿠아포닉스	o 아쿠아포닉스용 정식용 베드	o 재배방식별 매뉴얼 및	'21~'22
친환경 채소	개선	재배기술 개발	
연중생산 기술	o 고품질 샐러드 채소 생산성	o 고품질 샐러드 채소	
개발	검증	선발, 생산성 확보	
2) 노동력 절감용 무수정가지 재배기술 개발	o 가지 적화방법에 따른 생산력 검정 o 무수정가지 적정 생육 관리 기술 개발	o 노동력 절감 및 소득증대를 위한 무수정가지 재배기술 개발	'22~'23
3) 상추 우량계통	o 상추 우량계통 전국 지역 적응	o 품종등록 및 신품종	'20~'24
지역적응 시험	시험	통상실시	
4) ICT 적용시설가지	o 급액제어를 위한 일사량	o 고품질 가지생산을	'21~'23
일사량에 따른	기준 설정	위한 동절기	
급액제어 기술	o 생육 단계별 적정 배액율	시설가지 급액제어	
개발	구명	기술 개발	

3. 당초 연구계획과 변경된 사항

당 초	변 경	사 유
- 시설가지 급액제어 일사량	- 시설가지 급액제어 기술	- 급액제어 기술의 실용성
기준 및 급액량 구명	실증 추가	검토

4. 연구개발결과의 활용방안 및 기대성과

- 가. 연구개발결과의 활용방안
- 1) 학술발표 및 논문게제
- 가) 아쿠아포닉스 채소의 연중 생산성 비교
- 나) 무수정가지 재배에 따른 노동력 절감 및 수량 증대 효과
- 다) 일사량에 따른 양액공급이 가지의 생육에 미치는 영향
- 2) 영농활용
- 가) 아쿠아포닉스 수직형 재배모델 및 작물별 생산성
- 나) 노동력 절감을 위한 무수정가지 생육관리 방법
- 다) 일사량에 따른 급액제어 시 가지 생산성 향상 효과
- 3) 품종개발 및 통상실시
- 가) 수량성이 높으며 식미가 뛰어난 만추대성 '햇살청로메인' 등 2품종 통상실시
- 4) 홍보
- 가) 아쿠아포닉스 체험용 농장 운영으로 농가소득 향상
- 나) 인력부족 해결을 위한 무수정가지 재배법 개발
- 다) 시설가지 생산성 향상을 위한 ICT적용 급액제어 기술 개발

라) 경기도 상추 우량계통 현장평가

나. 기대성과

- 1) 기술적 측면
- 가) 국내 환경에 적합한 한국형 아쿠아포닉스 모델 및 연중생산기술 개발
- 나) 무수정가지 토경재배시 관비개시점 기준 제공
- 다) 만추대성 상추 신품종개발로 재배기간의 확대 및 재배 안정성 향상
- 라) 가지 양액재배 급액제어 매뉴얼 개발
- 2) 경제적산업적 측면
- 가) 아쿠아포닉스 산업화에 의한 일자리 창출 및 농가소득 증대
- 나) 가지 재배시 노동력 절감에 따른 농촌 인력 부족 문제 해결
- 다) 만추대성 및 식미감이 우수한 상추 신품종 육성으로 농가소득 증대 및 상추 소비시장 확대
- 라) 가지 일사량에 따른 급액제어로 고품질 가지 생산 및 농가소득 증대

5. 연구원 편성

세부과제	구분	소속	직 급	성 명	참여기간	참여비율 (%)
1) 아쿠아포닉스 친환	책 임 자	원예연구과	지방농업연구관	이진구	'22~'22	50
경 채소 연중 생산	공동연구자	"	지방농업연구사	황지은	'21~'22	20
기술 개발	"	"	"	김대균	'21~'22	10
	"	"	"	최란선	'21~'22	10
	"	"	지방농업연구관	이수연	'22~'22	10
2) 노동력 절감용 무	책 임 자	원예연구과	지방농업연구사	황지은	'22~'23	50
수정가지 재배기	공동연구자	"	지방농업연구관	이진구	'22~'23	20
술 개발	"	"	지방농업연구사	김대균	'22~'23	10
	"	"	"	최란선	'22~'23	10
	"	"	지방농업연구관	이수연	'22~'23	10
3) 상추 우량계통 지역적응 시험	책 임 자	원예연구과	지방농업연구사	김대균	'21~'24	50
시역작중 시험	공동연구자	"	지방농업연구관	이진구	'22~'24	20
	"	"	지방농업연구사	최란선	'21~'24	10
	"	"	"	황지은	'21~'24	10
	"	"	지방농업연구관	이수연	'22~'24	10
4) ICT 적용 시설가지	책 임 자	원예연구과	지방농업연구사	황지은	'21~'23	50
일사량에 따른 급액	공동연구자	"	지방농업연구관	이진구	'22~'23	20
제어 기술 개발	"	"	지방농업연구사	김대균	'21~'23	10
	"	"	"	최란선	'21~'23	10
		"	지방농업연구관	이수연	'22~'23	10

6. 연구개발비 소요명세서

(단위 : 백만원)

과제 및 세부과제명	1차년도 (2021)	2차년도 (2022)	3차년도 (2023)	4차년도 (2024)	합 계
O 시설채소 안정생산 기술 개발	135	135	95	15	380
1) 아쿠아포닉스 친환경 채소 연중생산 기술 개발	80	40	-	-	120
2) 노동력 절감용 무수정가지 재배기술 개발	_	40	40	_	80
3) 상추 우량계통 지역적응 시험	15	15	15	15	60
4) ICT 적용 시설가지 일사량에 따른 급액 제어 기술 개발	40	40	40	-	120