과제구분		기본연구	수행시기	전반기		
연구과제 및 세부과제			연구분야	수행기간	과제책임자 및 세부책임자	
유용미생물 개발 및 이용연구			작물보호	'10~'14	경기도원 환경농업연구 과	이현주
1) 작물 생육촉진 미생물 개발 및 효과 구명			작물보호	'10~'12	경기도원 환경농업연구과	이현주
2) 인삼 병해 방제용 미생물 효과 검정			작물보호	'10~'12	경기도원 환경농업연구과	이현주
3) 미생물과 추출물 복합 병해방제용 친환경 농자재개발			작물보호	'12~'13	경기도원 환경 당 안간과	이현주
4) 유기물분해 기능성 미생물 개발			작물보호	'12~'14	경기도원 환경: 업연기 과	이현주
색인용어	유용	아미생물, 병방제, 생육촉진	3]			

1. 연구개요

가. 연구의 필요성

- 최근 화학농약, 화학비료, 생장조정제 등의 과다 사용으로 인한 농업 생태계 위협으로 사용량 감축이 필요함.
- 정부는 친환경농업육성법의 시행과 함께 2013년까지 화학비료, 농약사용량의 40% 감축을 목표로 친환경 농업의 필요성을 강조하고 있음
- 시설하우스의 비료 과다 투입으로 토양화학성 및 미생물상 악화로 작물 생산성이 저하되고 있으며 화학비료와 농약감축을 위한 미생물 등의 새로운 생물 자원 육성 및 환경 보전형 기반 기술 개발이 필요함.
 - 화학비료 사용량 : 374('05) → 242('10) → 205kg/ha('15)
 - 합성농약 사용량 : 11.8('05) → 9.9('09) → 8.4kg/ha('15)
- 소비자의 안전농산물에 대한 요구 증가와 환경보전을 위한 녹색기술 소재로 미생물 산업이 부상하고 있으며 국내 농업환경에 적합한 미생물 농약, 미생물비료 등 새로운 소재의 적극적인 발굴이 필요함.

2012 농업과학기술개발 **▮시험연구계획서**

나. 연차별·단계별 종합연구목표

구 분	종 합 연 구 목 표
1년차	o 유용미생물의 수집 및 선발과 분류동정 o 유용미생물의 항균효과 및 특성 조사
2년차	o 유용미생물의 배양조건 확립 및 효능검정 분석 o 유용미생물의 친환경농업이용 효과 분석
3년차	o 유용미생물의 대량배양 조건확립 및 보급 o 미생물의 농가 실용화 기술 개발

2. 연구추진 내용

가. 종합연구내용

세부과제	주 요 연 구 내 용	연구목표	수행기간
1) 작물 생육촉진 미생물 개발 및 효과 구명	o 생육촉진기능 미생물 선발 o 원예작물 생육촉진 효과 검정	o 생육촉진용 유용 미생물 개발	'10~'12
2) 인삼 병해 방제용미생물 효과 검정	o 길항미생물 분리 o 미생물 특성 및 방제 효과 검정	o 인삼 주요병해 방제 용 미생물 개발	'10~'12
3) 미생물과 추출물 복합 병해방제용 친환경 농자재개발	o 길항미생물과 추출물 특성조사 o 미생물과 추출물 합제의 특성 및 방제 효과 검정		'12~'13
4) 유기물 분해 기능성 미생물 개발	o 셀룰로스분해기능 미생물 선발 o 유기물 분해 효과 검정	o 유기물 분해 기능성 미생물 개발	'12~'14

나. 당해년도 세부연구내용

세부과제	연차	연 구 내 용
1) 작물 생육촉진 미생물 개발 및 효과 구명	3/3	o Bacillus B6 포장처리 효과 구명 - 시험균주: Bacillus B6 - 시험작물: 상추, 오이 - 처리내용: 육묘상, 정식전후, 생육기 처리, 무처리 - 조사내용: 생육, 수량, 토양미생물, 토양화학성
2) 인삼 병해 방제용 미생물 효과 검정	3/3	 0 인삼 주요 병해 방제 미생물 포장효과 검정 - 시험균주 : Bacillus GG112 - 대상병해 : 인삼 점무늬병, 잿빛곰팡이병 등 - 대상작물 : 2~4년생 인삼(본답) - 시험내용 : 미생물 살포처리, 약제처리, 무처리 - 조사내용 : 방제효과, 약해 등
3) 미생물과 추출물 복합 병해방제용 친환경 농자재개발	1/2	<시험1> 미생물과 식물추출물 복합 이용 재료 선발 시험재료: Bacillus GG95 등 항균미생물, 유게놀 등 항균추출물 9종 대상병해: 잿빛곰팡이병 등 시험내용: 저지원법, 생물검정법 등 조사내용: 항균력 등 <시험2> 미생물과 식물추출물 혼용 항균효과 검정 시험재료: Bacillus GG95 등 항균미생물, 유게놀 등 선발 항균추출물 대상병해: 잿빛곰팡이병 등 처리내용: 미생물, 추출물 단용 처리 미생물+추출물의 혼용 처리 (100배, 250배, 500배) 조사내용: 미생물 균수변화, 항균력, 방제가 등
4) 유기물 분해 기능성 미생물개발	1/3	o 셀룰로스 분해 기능성 미생물 선발 - 대상균주 : Bacillus sp. 등 150균주 - 처리내용 : CMC(카복실메칠셀룰로즈) 배지법 등 - 조사내용 : 셀룰로오스 분해정도 등

3. 연차별 연구결과 활용계획 및 실적

연도(연차)	활용구분	제 목
2012년도(3년차)	특허출원	식물 생육촉진 미생물
2012년도(3년차)	학술논문	유용미생물을 이용한 인삼병해 방제 효과
2012년도(3년차)	특허출원	인삼 병해 방제용 유용미생물
2013년도(2년차)	영농활용	미생물 복합 이용 병해방제법

4. 세부과제 연구원 편성

세부과제	구 분	소 속 (과/팀)	직 급	성 명	수 행 업 무	참여 기간
1) 작물 생육촉진 미생물 개발 및	책임자	경기도원 환경농업연구과	농업 연구사	이현주	시험수행 총괄	'10~'12
효과 구명	공동 연구자	"	n,	소호섭	자료 검색	'10~'12
	공동 연구자	"	"	김대균	자료 검색	'10~'12
	공동 연구자	n,	농업 연구관	원선이	자료 검색	'10~'12
	공동 연구자	"	"	김순재	시험자문	'10~'12
2) 인삼 병해 방제용 미생물 효과 검정	책임자	경기도원 환경농업연구과	농업 연구사	이현주	시험수행 총괄	'10~'12
, , , , , , , , , , , , , , , , , , , ,	공동 연구자	"	"	소호섭	자료검색	'10~'12
	공동 연구자	"	"	김대균	포장시험	'10~'12
	공동 연구자	"	농업 연구관	원선이	자료 검색	'10~'12
	공동 연구자	n	"	김순재	시험자문	'10~'12

세부과제	구 분	소 속 (과/팀)	직 급	성 명	수 행 업 무	참여 기간
3) 미생물과 추출물 복합 병해방제용	책임자	경기도원 환경농업연구과	농업 연구사	이현주	시험수행 총괄	'12~'14
친환경 농자재개발	공동 연구자	"	"	김대균	자료검색	'12~'14
	공동 연구자	"	농업 연구관	원선이	자료검색	'12~'14
	공동 연구자	"	"	김순재	시험자문	'12~'14
4) 유기물 분해 기능성 미생물개발	책임자	경기도원 환경농업연구과	농업 연구사	이현주	시험수행 총괄	'12~'14
	공동 연구자	"	"	소호섭	자료검색	'12~'14
	공동 연구자	"	"	김대균	자료검색	'12~'14
	공동 연구자	"	농업 연구관	원선이	자료검색	'12~'14
	공동 연구자	"	"	김순재	시험자문	'12~'14

5. 연도별 연구비 소요예산

(단위 : 백만원)

과제 및 세부과제	2011	2012	2013	계
유용미생물 개발 및 이용 연구	40	80	40	160
1) 작물 생육촉진 미생물 개발 및 효과 구명	20	20	_	40
2) 인삼 병해 방제용 미생물 효과 검정	20	20	_	40
3) 미생물과 추출물 복합 병해방제용 친환경 농자재개발	_	20	20	40
4) 유기물분해 기능성 미생물 개발	_	20	20	40

6. 기대 및 파급효과

○ 새로운 미생물을 이용한 친환경농업 기술개발로 화학농약 및 비료 대체와 친환경농산물 생산으로 농가소득 향상 기대