	·제 ·분	연구 분야	연구과제 및 세부과제	수행기간	연구실	책임자
기	걔	버 섯	유전공학적 방법을 이용한 신품종 육성	'04 <i>~</i>	경기도원 버섯연구소	이윤혜
		버섯	1) 느타리버섯 원형질체 융합에 의한 신품종 육성(완결)	'04~'08	경기도원 버섯연구소	최종인
		버섯	2) 형질전환을 위한 유전자 삽입기법 개발	'07 <i>~</i>	경기도원 버섯연구소	이윤혜

1. 연구개발 필요성

- 가. 연구개발대상 기술의 경제적·산업적 중요성 및 연구개발 필요성
 - ☐ 경제적·산업적 중요성
 - 분자생물학의 발전으로 형질전환기술을 이용한 식물체 품목은 늘어나는 추세이나 상품화된 버섯류는 보고된 바 없음.
 - 버섯의 유용성분 생합성에 및 난분해성 물질 분해관련 유전자의 삽입을 통하여 식품으로서의 이용과 산업적 적용으로 부가가치 향상이 요구됨.
 - □ 연구개발의 필요성
 - 양송이, 표고 및 팽이버섯 주요 식용버섯류의 형질전환에 관한 연구보고는 많이 이루어 졌으나 느타리버섯에 관한 연구는 미흡함.
 - 국내 재배비중이 높은 느타리버섯의 형질전환 기술을 통한 물질대사 기작 및 생리 작용에 관한 유전자수준에서의 구명이 필요함.
- 나. 연구개발대상 기술의 국내・외 현황
 - (1) 세계적 수준
 - 사상균류의 형질전환 기법은 원형질체를 분리하여 PEG/CaCl₂ 처리법 및 전기 충격법(Electrophoresis)이 가장 일반적으로 사용됨.
 - Hygromycin 저항성 선발마커를 사용한 느타리버섯의 형질전환기술이 보고되었음 (Lemke, 1992).
 - *Cbx* 저항성 선발마커를 사용한 느타리버섯 형질전환기술 개발됨(Honda, 2001).
 - (2) 국내수준
 - 영양요구성 선발마커를 이용한 형질전화기술이 보고되었음(변 등, 1989, 1997)
 - Uracil 영양요구성 마커를 이용한 형질전환법 개발과 느타리버섯의 promoter를 사용한 phleomycin 저항성 유전자 발현을 통한 마커가 개발됨(김 등, 1999).

(3) 국내외의 연구현황

- Manganese peroxidase(리그닌분해효소) 유전자의 형질전환체를 이용하여 효소 활성이 높은 느타리버섯 균주 확보(Honda 등, 2001).
- 느타리버섯의 EST 데이타베이스 구축으로 생리작용기작의 분자생물학적 구명 기반이 마련됨(조 등, 2007).
- 양송이버섯의 Agrobacterium을 매개로한 형질전환효율이 30~40%로 높았음 (Chen 등, 2000)

2. 연구개발 목표 및 내용

가. 연구개발 최종목표 및 성격

- (1) 연구개발 최종목표
 - 버섯류의 형질전환 기술 확립
 - 버섯의 유용성분생합성 및 리그닌분해관련 유전자 형질전환을 통한 고발현 균주 확보 및 품종개발 재료로 이용.
- (2) 연구개발 성격
 - 품종육성 기술 개발
- 나. 연차별 연구개발 목표 및 내용

세부과제	구 분	연구개발 목표	연구개발 내용		
2세부과제	당해연도 ('09)	○ 효율적인 형질전환 기술 개발	<시험1> 적합 삽입 벡터type 선발 ○ 시험버섯 : 느타리버섯 ○ 시험벡터 : pBGgHg 등 2종 ○ 시험방법 : PEG법 ※ 원형질체농도: 1.0×10⁸cell/mℓ 이상 ○ 벡터type : 선형, 구형 ○ 주요조사내용 : 형질전환효율 		

세부과제	구 분	연구개발 목표	연구개발 내용			
2세부과제	당해연도 ('09)	○ 효율적인 형질전환 기술 개발	<시험2> Bambardment 법을 이용한 형질전환 조건 구명 시험버섯: 느타리버섯 시험벡터: pBGgHg 등 2종 처리내용 Gold Particle 직경: 0.6μm 등 3수준 주요조사내용: 형질전환효율 시험3> 전기충격법을 이용한 형질전환 조건 구명 시험버섯: 느타리버섯 시험벡터: pBGgHg 등 2종 처리내용 전기용량(μF): 10 등 3수준 용기크기(cm): 0.1 등 3수준 ※ 충격회수: 1회 주요조사항목: 형질전환효율 			

3. 연구개발 추진전략 • 방법 및 추진체계

- 가. 연구개발 추진전략 · 방법
 - □ 국내·외 연구기관 및 대학과의 유기적 연구협력
 - 국내·외 형질전환관련 정보교환 및 연구결과 교류
 - 버섯 형질전환체의 산업적 이용에 관한 정보수집 및 연구결과 교류
 - □ 다양한 버섯의 형질전환기술 접목 수행
 - 느타리버섯 이외의 식용버섯의 형질전환기술 적용으로 효율적인 버섯 선발
 - 버섯류에 적용성이 넓고 효율적인 형질전환 기술 개발
- 나. 연구개발 추진체계

			_	
○ 정보 수집 : 선행연구결과정리 ○ 형질전환 기술교류 : 한경대	\Rightarrow	○ 느타리버섯의 형질 전환 수행 ○ 형질전환여부 확인	\Rightarrow	○ 형질전환체 유전자 발현 검정 : 유용성분 및 효소활성 분석
형질전환 기술 확립		형질전환체 확보		고발현 형질전환체 확보

4. 연구개발결과 활용방안 및 기대성과

- 가. 연구개발결과 활용방안(사업화 및 현장적용 계획 포함)
 - □ 논문발표
 - 느타리버섯에 있어서 형질전환방법에 따른 적정 조건 선발(2010)
 - 리그닌분해 우량균주에 의한 난분해성 물질 분해능 분석(2011)
 - □ 균주특허
 - 리그닌분해능 우수 균주 선발(2011)

나. 기대성과

- (1) 기술적 측면
 - 느타리버섯 형질전환 기술 확립
- (2) 경제적·산업적 측면
 - 버섯의 유용성분 대량생산 균주 확보
 - 난분해성 물질분해능 우수 균주 확보

5. 연구원 편성표

구분	성명	소속 기관명	직급	참여율	전공 및 학위			
一十世				(%)	학위	연도	전공	학교
총괄 연구책임자	이윤혜	경기도원 버섯연구소	농업연구사	-	박사	2006	생명공학	히로시마대
2세부과제 책임자	이윤혜	경기도원 버섯연구소	농업연구사	40	박사	2006	생명공학	히로시마대
	최종인	"	농업연구사	20	석사	1999	원예학	충북대
2세부과제	김종군	"	박사과정	20	석사	2004	생명공학	한경대
참여연구원	강희완	"	교수	10	박사	1994	생화학	나고야대
	강영주	"	연구보조원	10	_	_	_	_

6. 연구개발비 소요명세서

(단위: 백만원)

과제 및 세부과제	1차년도('07)	2차년도('08)	3차년도('09)	합계
유전공학적 방법을 이용한 신품종 육성	50	50	50	150
1) 형질전환을 위한 유전자 삽입기 법 개발	50	50	50	150