과제 구분	연구분야	연구과제 및 세부과제	수행기간	연구실	책임자
기 본	채소	새로운 수경재배 기술체계 확립 연구	'07~'12	경기도원 원예연구과	심상연
기 본	채소	1) 펄라이트 자루재배 확대를 위한 과채류 적용기술 연구	'07~'08	경기도원 원예연구과	심상연
"	채소	2) 배액전극법을 이용한 고형배지경 급액 관리기술 개선연구	'08~'08	경기도원 원예연구과	심상연
"	채소	3) 고온기 펄라이트 자루재배시 관수 방법 개선 연구	'08~'08	경기도원 원예연구과	심상연
"	채소	4) 배액전극센서시스템 재배부 개선 연구	'09~'09	경기도원 원예연구과	심상연
수출사업단	채소	5) 배액전극센서시스템 베드식 재배법 적용 연구	'09~'12	경기도원 원예연구과	심상연

1. 연구개발 필요성

- 가. 연구개발대상 기술의 경제적 · 산업적 중요성 및 연구개발 필요성
 - □ 우리나라 수경재배면적은 90년대 급성장에 이어 2000년에는 1,944호 700ha, '02년 2,068호 780ha로 증가하고 있으며 이중 펄라이트 재배는 944농가 314.3ha로 40%를 점유함
 - □ 현재의 수경재배 방식은 배양액관리 체계화 미흡에 의해 용수와 비료의 효율적 이용도 낮음 → 자루 방식에 의한 표준화로 작업시간, 경비, 노동력 절감 필요
 - □ 급액관리 시스템 중 간접제어인 시간제어 와 일사량 제어는 배지내 수분의 과부족이 심하고 배액이 많이 발생하며, 식물의 증발산과 광량과의 상관성을 이용함으로, 광량과 무관한 엽면적지수(LAI) 및 증기압차(VPD) 때문에 정확한 급액관리 곤란
 - □ 수경재배는 초기 시설비와 재배기술이 어렵다는 선입견으로 면적이 급격히 늘어나고 있지는 않지만 앞으로 청정 먹거리 생산과 노동력 절감을 위해서 우리농업이 가야 할 방향임
 - □ 수경재배에서 급액관리는 작업항목 중 최다일수를 차지하며 과실의 생산량 및 품질에 직결되므로 가장 중요한 부분임
 - □ 기 개발된 배액전극센서시스템의 펄라이트 베드식 재배법에 적용하여 적용범위 확대 및 보급 필요
- 나. 연구개발대상 기술의 국내・외 현황
 - (1) 세계적 수준
 - 유럽 및 스페인에서 상품화되어 일반적으로 쓰이고 있는 매우 안정적이고 합리적인 관수시스템 임.

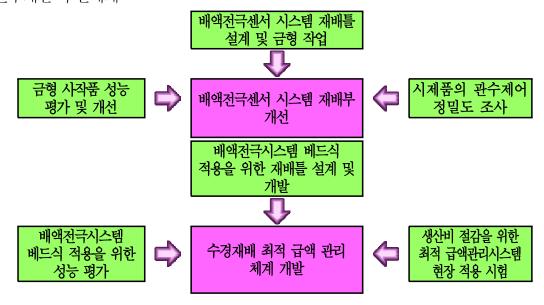
(2) 국내수준

- '()4년도부터 연구를 시작하여 개발 보급 단계에 있으며 기술 안정화 단계에 있음.
- (3) 국내외의 연구현황
 - 배액전극관수시스템을 이용한 자루식 수경재배 기술로 토마토에서 일사량관수 시스템에 비해 50% 절감(3,296 → 1,648천원/20a), 풋고추 수량 48%, 애호박 수량 15% 증수, 베드시스템 대비 양액시스템 시설비 28% 절감('08 경기도원 영농활용)
 - 친환경 자루충진방식 펄라이트 수경재배 체계개발('06 농림기술과제)
 - 배지수분 직접 제어에 의한 친환경 급액관리법 개발 및 실증 보급('08 농진청 현장협력과제)
 - 반촉성 완숙 토마토 펄라이트 재배시 적정 급액량과 급액농도-TDR센서와 타이머 이용('03 원예학회지)
 - 양액재배시 급액 조절을 위한 수분 트레이-수위감지센서, 수분트레이('99 특허)

2. 연구개발 목표 및 내용

- 가. 연구개발 최종목표 및 성격
 - (1) 연구개발 최종목표
 - 고품질 과실 생산을 위한 수경재배 최적 급액관리시스템 확립
 - 수경재배 최적 급액관리법 확립 및 현장적용
 - (2) 연구개발 성격
 - 배액전극시스템의 베드식 적용 시작품 개발 및 상용화
 - 배액전극시스템을 이용한 수경재배 최적급액법 매뉴얼 제작

나. 연차별 연구개발 목표 및 내용


세부과제	구 분	연구개발 목표 연구개발 내용		
1세부과제	1차년도 ('07)	- 펄라이트 자루의 작목 확대	- 시험작물: 오이, 파프리카 - 처리내용: 전극높이조절에 의한 관수 ① 전극높이 2cm ② 전극높이 2.4cm ③ 전극높이 2.8cm ④ 전극높이 3.2cm ○ 급액방법: 배액전극법 ○ 파종(정식)일: 2월하순(3월하순), 2월상순(3월하순) - 주요조사항목: 과실품질 및 생육특성, 기형과 등	

세부과제	구분	연구개발 목표	연구개발 내용
1세부과제	2차년도 ('08)	- 펄라이트 자루의 작목 확대	- 시험작물: 풋고추, 애호박 - 처리내용 ① 베드식 펄라이트 수경재배 ② 자루식 펄라이트 수경재배 - 파종(정식)일: 1월하순(3월하순) - 주요조사항목: 과실품질 및 생육특성, 기형과 등
2세부과제	1차년도 ('08)	- 급액관리기의 배지종류별 확대적용	- 시험작물: 토마토(로꾸산마루) - 처리내용 ① 배 지: 암면, 코코피트 ② 급액법: 일사량 급액법(대조), 배액전극법 - 주요조사항목: 배지 수분변화, 배액량변화,
3세부과제	1차년도 ('08)	- 고온기 급액관내 배양액 온도상승 문제점 개선	- 시험작물: 토마토(로꾸산마루) - 처리내용 ① 급액관 노출 급액(대조) ② 급액관 단열재설치 흑백필름 피복 급액 - 주요조사항목: 관수관내 온도변화, 배액온도 변화 등
4세부과제	1차년도 ('09)	- 배액전극센서시스템 재배틀 개선 및 성형생산	- 시험작물 : 완숙토마토 - 연구내용 : 배액전극센서시스템의 금형 성형 및 제어 정확성 조사, 금형 조정 및 완성
	1차년도 ('09)	- 배액전극센서시스템 베드식 제어방법 고안 및 시작품 제작	- 시험작물 : 완숙토마토 - 시험처리 : 배액전극관수제어 베드재배, 일사량 관수제어 베드재배 - 연구내용 : 배액전극센서시스템의 베드식 제어 방법 고안 및 시작품 제작
5세부과제	2차년도 ('10)	- 배액전극센서시스템 베드식 제어방법 시작품 성능평가 및 개선	- 시험작물 : 완숙토마토 - 연구내용 : 배액전극센서시스템의 베드식 제어 방법 시작품 성능평가 및 개선
	3차년도 ('11)	- 배액전극센서시스템 베드식 제어방법 완제품 성능평가 및 개선	- 시험작물 : 완숙토마토 - 연구내용 : 배액전극센서시스템의 베드식 제어 방법 완제품 성능평가 및 개선
	4차년도 ('12)	- 배액전극센서시스템 베드식재배법 현장 적용 시험 및 매뉴얼 제작	- 개발된 베드식 배액전극센서시스템의 농가 현장 적용 성능평가 시험 및 개선, 매뉴얼 제작

3. 연구개발 추진전략·방법 및 추진체계

- 가. 연구개발 추진전략 · 방법
 - □ 토마토 수술연구사업단과 유기적인 연구개발 공조체제 구축
 - ☐ 에너지절감형 온실개발을 위한 산·학·연 공조체제 구축
 - 상명대 식물산업공학과와 연구개발내용 협의 및 공동연구개발 체제 구축
 - 배액전극센서시스템의 산업화 실시기업인 한가람 포닉스와 제품화, 개선에 따른 문제점 보완 및 제작, 금형보완 등 협조체제 유지

나. 연구개발 추진체계

4. 연구개발결과 활용방안 및 기대성과

- 가. 연구개발결과 활용방안
 - □ 배액전극관수시스템 재배틀 개선 및 상품화 기술이전
 - □ 배액전극관수시스템 베드식 재배법 적용기술 개발 및 산업체 기술이전
- 나. 기대성과
 - (1) 기술적 측면
 - 최적급액관리시스템은 저렴하고, 유지 보수가 용이하며 경영비를 절감하고 수익성을 높임 → 수경재배 산업 규모 확장에 기여.
 - 정확한 급액관리에 의해 급액량을 10% 절감 → 생산비 절감.
 - (2) 경제적 · 산업적 측면
 - 안정된 고품질의 농산물 생산을 통한 농산품 수출시장의 경쟁력 확보
 - 생산성 향상 및 품질 향상에 따른 생산비 대비 소득 증대에 기여
 - 급액관리시스템 수요 증가 → 시스템 생산 기업 발전에 기여
 - 가장 빈도가 높은 농작업인 급액관리의 최적화 및 자동화 → 농촌 노동력 부족에 대처
 - 작업환경 자동화 → 농촌 젊은 인력의 작업환경 요구에 부응 → 농촌 활력
 - 산업경쟁력 향상 → 신선 농산물 수출경쟁력 제고

5. 연구원 편성표

78	성명	소속 기관명	직급	참여율	참여율 전공 및 학위				
구분				(%)	학위	연도	전공	학교	
총괄 연구책임자	심상연	경기도원 원예연구과	농업연구사	30	석사	1998	채소	고려대	
1, 2, 3, 4 세부과제 책임자	심상연	경기도원 원예연구과	농업연구사	30	석사	1998	채소	고려대	
	이수연	"	농업연구사	30	박사	2004	채소	서울시립대	
1 0 0 4	서명훈	"	농업연구관	30	박사	2002	채소	고려대	
1, 2, 3, 4 세부과제	김순재	"	농업연구관	30	석사	1992	경제작물	건국대	
참여연구원	김영식	상명대	교수	30	박사	1988	시설원예	동경대	
	박광순	경기도원 원예연구과	기술사무원	30	학사	2005	기계설계	오산대	
5세부과제 책임자	심상연	경기도원 원예연구과	농업연구사	30	석사	1998	채소	고려대	
	이상우	"	농업연구사	30	박사	2004	농생물	서울대	
	이수연	"	농업연구사	30	박사	2004	채소	서울시립대	
5세부과제 참여연구원	서명훈	"	농업연구관	30	박사	1992	채소	고려대	
	김영식	상명대	교수	30	박사	1988	시설원예	동경대	
	김은비	경기도원 원예연구과	기술사무원	30	학사	2004	시설원예	상명대	

6. 연구개발비 소요명세서

(단위:백만원)

과제 및 세부과제	1차년도 ('07)	2차년도 ('08)	3차년도 ('09)	4차년도 ('10)	5차년도 ('11)	6차년도 ('12)	합계 (천원)
새로운 수경재배 기술체계 확립 연구	40	126	60	40	40	40	346
1) 펄라이트 자루재배 확대를 위한 과채류 적용기술 연구	40	42	_	_	_	_	83
2) 배액전극법을 이용한 고형배지경 급액관리기술 개선 연구	_	42	_	_	-	_	44
3) 고온기 펄라이트 자루재배시 관수방법 개선 연구	_	42	_	_	_	_	45
4) 배액전극센서시스템 재배부 개선 연구	_	_	20	_	_	_	24
5) 배액전극센서시스템 베드식 재배법 적용 연구	_	_	40	40	40	40	165